QCD and Spin Physics Lecture 3

M. Diehl

Deutsches Elektronen-Synchroton DESY

BNL Spin Fest, 29 July 2009

The parton model

parton model description for DIS, Drell-Yan, etc.

- fast-moving hadron
 - \approx set of free partons with low transv. momenta
- physical cross section
 - = cross section for partonic process $(\gamma^*q \to q, q\bar{q} \to \gamma^*)$
 - × parton densities

task:

- implement the parton-model ideas in QCD and correct them where necessary
 - identify conditions and limitations of validity (kinematics, processes, observables)
 - corrections: partons interact α_s small at large scales \rightsquigarrow perturbation theory
 - definition of parton densities in QCD derive their general properties make contact with non-perturbative methods

Light-cone coordinates

 $\rightsquigarrow \mathsf{blackboard}$

Factorization

0000000

Kinematics of DIS

→ blackboard

Factorization from Feynman graphs take inclusive DIS as example

- consider Bjorken limit, choose frame where
 - $p^+ \gg p^-$ (proton fast right-moving)
 - $q^+ \sim q^- \sim p^+$
 - $p_T = q_T = 0$
- for power counting
 - large: $p^+ \sim q^+ \sim q^- \sim Q$
 - ightharpoonup small: hadron masses, scales of non-non-perturbative interact. $\sim m$
 - ightharpoonup very small: $p^- \sim m^2/Q$

small expansion parameter is m/Q

for power counting

- ▶ large: $p^+ \sim q^+ \sim q^- \sim Q$
- \triangleright small: hadron masses etc. $\sim m$
- very small: $p^- \sim m^2/Q$
- ▶ in Bj limit graphs for $\gamma^* p \rightarrow \gamma^* p$ dominated by distinct momentum regions:
 - $k^+ \sim k^- \sim k_T \sim Q$, $k^2 \sim Q^2$ ► hard: • collinear (to proton): $k^+ \sim Q$, $k_T \sim m$, $k^- \sim m^2/Q$, $k^2 \sim m^2$
 - $k^{+}, k^{-}, k_{T} \ll Q$ $k^2 \ll O^2$ ► soft:

proof involves advanced quantum field theory methods

organize graphs into hard, collinear, and soft subgraphs

Factorization

00000000

- power counting
 - hard subgraph $\propto Q^{\dim(H)}$
 - collinear subgraph $\propto m^{\dim(A)}$ $(complications \rightarrow later)$
 - collinear lines:

$$d^4k = dk^+ dk^- d^2k_T \sim Q \times m^2/Q \times m^2 = m^4$$

- soft subgraph and lines: depends on detailed size of k^{μ}
- leading term: smallest possible number of lines to H

 $(complications \rightarrow later)$

tree-level hard graphs: no large k_T , but $k^+ \sim k^- \sim Q$

in loops: $k_T \sim Q$

Factorization

00000000

Collinear expansion

Factorization

▶ in hard graphs neglect small components of external coll. lines → Taylor expansion

$$H(k^+, k^-, k_T) = H(k^+, 0, 0) + k_T^{\mu} \left[\frac{\partial H(k^+, 0, k_T)}{\partial k_T^{\mu}} \right]_{k_T = 0} + \mathcal{O}(m^2)$$

first term \rightarrow leading twist, second term \rightarrow twist three, ...

loop integration simplifies:

$$\int d^4k \, H(k) A(k) \approx \int dk^+ \, H(k^+, 0, 0) \, \int dk^- d^2k_T \, A(k^+, k^-, k_T)$$

- in hard scattering treat incoming/outgoing partons as exactly collinear $(k_T=0)$ and on-shell $(k^-=0)$
- ightharpoonup in coll. matrix element integrate over k_T and virtuality \rightsquigarrow collinear (or k_T integrated) parton densities only depend on k^+

▶ *H* and *A* carry spinor indices:

$$H_{\beta\alpha}A_{\alpha\beta} = \operatorname{tr}(HA)$$

• use Fierz transformation $\leftrightarrow \operatorname{tr}(\gamma_{\mu}H) \operatorname{tr}(\gamma^{\mu}A)$ etc.

- Lorentz invariance: in proton rest frame all components of $\operatorname{tr}(\gamma^{\mu}A(k,p,s))$, $\operatorname{tr}(\gamma^{\mu}\gamma_{5}A(k,p,s))$, $\operatorname{tr}(\sigma^{\mu\nu}\gamma_{5}A(k,p,s))$, ... are $\sim m^{\dim(A)}$ since $k^{\mu}, p^{\mu}, ms^{\mu} \sim m$
- ▶ boost to Breit frame \leadsto largest components $\operatorname{tr} \left(\gamma^+ A(k,p,s) \right), \operatorname{tr} \left(\gamma^+ \gamma_5 A(k,p,s) \right), \operatorname{tr} \left(\sigma^{+j} \gamma_5 A(k,p,s) \right)$ are $\sim Q m^{\dim(A)-1}$ j=1,2 transverse index
- ▶ in Breit frame all components of $\operatorname{tr}(\gamma_{\mu}H), \operatorname{tr}(\gamma_{\mu}\gamma_{5}H), \ldots$ are $\sim Q^{\dim(B)}$

Summary

up to power corrections have

$$\operatorname{tr}(HA) = \frac{1}{4} \left[\operatorname{tr}(\gamma^{-}H) \operatorname{tr}(\gamma^{+}A) + \operatorname{tr}(\gamma_{5}\gamma^{-}H) \operatorname{tr}(\gamma^{+}\gamma_{5}A) + \frac{1}{2} \operatorname{tr}(i\sigma^{-j}\gamma_{5}H) \operatorname{tr}(i\sigma^{+j}\gamma_{5}A) \right]$$

 \blacktriangleright coll. approx.: in H replace $k\to \bar k$ with $\bar k^+=k^+,\,\bar k^-=0,\,\bar k_T=0$

$$\begin{split} &\int d^4k \ \operatorname{tr}(HA) \\ &= \int dk^+ \frac{1}{4} \operatorname{tr} \Big[\gamma^- H(\bar{k}) \Big] \int dk^- d^2k_T \ \operatorname{tr} \Big[\gamma^+ A(k) \Big] + \{ \text{other terms} \} \\ &= \int \frac{dk^+}{k^+} \frac{1}{2} \operatorname{tr} \Big[\bar{k}^+ \gamma^- H(\bar{k}) \Big] \times \frac{1}{2} \int dk^- d^2k_T \ \operatorname{tr} \Big[\gamma^+ A(k) \Big] \\ &\quad + \{ \text{other terms} \} \end{split}$$

▶ closer look at the factors ~→ blackboard

Definition of quark densities

comparing with parton model result identify

$$f_1(x) = \frac{1}{2} \int \frac{d\xi^-}{2\pi} e^{ixp^+z^-} \langle p | \bar{q}(0)\gamma^+ W(0, z^-) q(z^-) | p \rangle$$

$$g_1(x) = \frac{1}{2} \int \frac{d\xi^-}{2\pi} e^{ixp^+z^-} \langle p | \bar{q}(0)\gamma^+ \gamma_5 W(0, z^-) q(z^-) | p \rangle$$

with parton densities:

$$\begin{split} f_1(x) &= \begin{cases} q(x) & \text{for } x > 0 \\ -\bar{q}(x) & \text{for } x < 0 \end{cases} & -\text{from } dd^\dagger = -d^\dagger d \\ g_1(x) &= \begin{cases} \Delta q(x) & \text{for } x > 0 \\ \Delta \bar{q}(x) & \text{for } x < 0 \end{cases} & \text{extra - from helicity} = -\text{ chirality} \end{split}$$

• transversity $h_1(x)$ with $\gamma^+ \to i\sigma^{+j}\gamma_5$

Gluon densities

Factorization

$$q(x) = \frac{1}{2} \int \frac{d\xi^{-}}{2\pi} e^{ixp^{+}z^{-}} \left\langle p \left| \bar{q}(0)\gamma^{+} W(0, z^{-}) q(z^{-}) \right| p \right\rangle$$

for gluons replace

$$q(x) \to xg(x)$$
 $\Delta q(x) \to x\Delta g(x)$ $\frac{1}{2}\bar{q}\gamma^+q \to F^{+i}F_i^+$ $\frac{1}{2}\bar{q}\gamma^+\gamma_5q \to F^{+i}\widetilde{F}_i^+$

with dual field strength $\widetilde{F}^{\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} F_{\alpha\beta}$

- understand extra factors x
 - $F_{\mu\nu}^a = \partial_\mu A_\nu^a \partial_\nu A_\mu^a + g f^{abc} A_\mu^b A_\nu^c$
 - in light-cone gauge $A^+=0$ have $F^{+i}=\partial^+A^i$
 - compare $\frac{1}{2}\bar{q}\gamma^+q \to k^+$ with $F^{+i}F_i^+ = (\partial^+A^i)^2 \to (k^+)^2$

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- collinear factorization if
 - integrate over q_T of photon or
 - ▶ take $q_T \gg m$ large

 $(q_T \sim m \text{ in Friday lecture})$

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- ▶ no direct use of opt. theorem since γ^* fixed in final state trick: use crossing symm. to relate $pp \to \gamma^* X$ to $pp \gamma^* \to X$

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- ▶ no direct use of opt. theorem since γ^* fixed in final state trick: use crossing symm. to relate $pp \to \gamma^* X$ to $pp \gamma^* \to X$
- soft interactions between right- and left- moving spectators power suppr. only if sum over details of hadronic final state

Process vs. parton kinematics

- for $\int d^2q_T$ tree level = $\mathcal{O}(\alpha_s^0)$ have $q_T \approx 0$
- ▶ measure $Q^2 \approx 2q^+q^$ and $y = \frac{1}{2}\log\frac{q^+}{q^-}$ $\Rightarrow q^+ = x_1p_1^+, \ q^- = x_2p_2^-$

- for large fixed q_T tree level = $\mathcal{O}(\alpha_s)$
- ▶ measure q_T , $Q^2 = 2q^+q^- q_T^2$ and $y_q = \frac{1}{2}\log\frac{q^+}{q^-}$ $\Rightarrow q^+$ and q^-
- $2(x_1p_1^+ q^+)(x_2p_2^- q^-) \mathbf{q}_T^2 = 0$
- ▶ to fix x_1 and x_2 also need $y_{\text{jet}} = \frac{1}{2} \log \frac{x_1 p_1^+ q^+}{x_- n_-^- q^-}$

More complicated final states

- ightharpoonup production of W,Z or other colorless particle (Higgs, etc) same treatment as Drell-Yan
- lacktriangle jet production in ep or pp: hard scale provided by p_T
- **•** heavy quark production: hard scale is m_c , m_b , m_t

Fragmentation

Factorization

ightharpoonup cross DIS eh o e + X to $e^+e^- o \bar{h} + X$ i.e., $\gamma^*h \to X$ to $\gamma^* \to \bar{h} + X$

lacktriangle or Drell-Yan $h_1h_2 \to \gamma^* + X$ to $\gamma^* \to \bar{h}_1\bar{h}_2 + X$

More processes

0000

Fragmentation functions

replace parton density

$$k^+ = xp^+$$

$$f(x) = \int \frac{d\xi^{-}}{4\pi} e^{i\xi^{-}p^{+}x} \langle h|\bar{q}(0)\Gamma^{+}W(0,\xi^{-})q(\xi^{-})|h\rangle$$
$$= \sum_{X} \int \frac{d\xi^{-}}{4\pi} e^{i\xi^{-}p^{+}x}$$
$$\times \sum_{X} \langle h|(\bar{q}(0)\Gamma^{+})_{\alpha}W(0,\infty)|X\rangle \langle X|W(\infty,\xi^{-})q_{\alpha}(\xi^{-})|h\rangle$$

by fragmentation function

$$p^+ = zk^+$$

$$\begin{split} D(z) &= \frac{1}{2N_c z} \int \frac{d\xi^-}{4\pi} \, e^{i\xi^- p^+/z} \\ &\times \sum_X \left\langle 0 \big| W(\infty, \xi^-) q_\alpha(\xi^-) \big| \bar{h} X \right\rangle \left\langle \bar{h} X \right\rangle \big| (\bar{q}(0)\Gamma^+)_\alpha W(0, \infty) \big| 0 \right\rangle \end{split}$$

Summary of lecture 3

- implements ideas of parton model in QCD
 - ▶ inclusion of perturbative corrections (NLO, NNLO, ...)
 - field theoretical def. of parton densities and fragmentation fcts.
 bridge to non-perturbative QCD
- valid for specified observables in specified kinematics
 - ▶ important results from general principles (power counting, ...)
 - ightharpoonup soft spectator interactions complicate analysis for >1 observed hadron (SIDIS, hadron-hadron coll., ...)
 - factorization proofs rather rare
- \blacktriangleright is an approximation scheme for large scales (Q, p_T, \dots)
 - rightharpoonup certain asymmetries zero in large-scale limit, progress in calculating $\frac{1}{O}$ suppressed (= twist three) observables
 - ▶ higher power corrections $(\frac{1}{Q^2}$ etc.) in general not calculable